

(財)日本建築総合試験所 試験研究センター 耐風試験室 室長 博士(工学) 西村宏昭

1. はじめに

建築物や構造物の風荷重がその形状に依存するこ とはよく知られている。そのため、多くの設計基規 準は建築物や構造物の形状ごとに設計用風圧係数を 与えている。建築基準法でも平成12年建設省告示第 1454号で構造骨組用風圧係数が、また同告示第1458号 で外装材用外圧係数が、切妻屋根、陸屋根、片流れ屋 根、鋸歯状屋根、円弧屋根などの屋根形状について示 されている。しかし、建築物で比較的多いと思われる 寄棟屋根の外圧係数は与えられていない。

建築基準法施行令第87条第2項では、設計しようと する建築物の外圧係数は風洞実験によって決定され る場合の他、告示第1454号と第1458号に示された外圧 係数を用いてもよいと書かれており、風洞実験によっ て求められた外圧係数の値の方が告示で例示された 外圧係数の値よりも優位に位置付けられている。本 稿では、風洞実験で決定された寄棟屋根の設計用外圧 係数について述べる。前述の告示で与えられている 各種の屋根形状の外圧係数は軒の出がない形状の屋 根についての値であるが、この風洞実験では軒の出の 変化についても考慮している。その際、軒天井の風圧 係数も測定したので、その設計用風圧係数についても 述べている。

2. 風圧係数の定義

風圧は、面に作用する単位面積当りの風の力(N/m²)で、注目する面を押す方向が正の符号で表され、面

を引く方向は負の符号で表される。物体に作用する 風の力、すなわち風力はその物体に作用する風圧の方 向を考慮して足し合わせた合力(ベクトル合成された 力)である。板状の物体に作用する風力Pfは、それぞ れの面に作用する圧力の差Pf=P1 - P2で表される(図1 (a)参照)。ここで、この風力はまだ単位面積当りの力 (N/m²)であり、板に掛かる風による全体の力(N)は、 差圧である風力に板の面積を乗じて求めなければな らない。ところが、板全体の力もまた「風力」と呼ぶこ とがあるので、多くの人が混乱するようである。告示 第1458号では風荷重を風圧力と呼び、単位面積当りの カ(N/m²)で表しているが、建築物荷重指針では注目 する部材の面積を乗じた力(N)を風荷重と呼んでい る。これらの用語は厳密に区別して用いられないの で、専門家の間でも混乱することがある。この問題は 容易に解決せず、常に単位を付けて風荷重を表現しな ければならない。

建築物全体の風力は建築物表面全体の圧力の方 向を考慮した合力として求められるが、屋根や壁の 風力は外面に作用する風圧 P_e と内面に作用する風圧 P_i (すなわち室内圧)との差 $P_f = P_e - P_i$ で与えられる (図1(b)参照)。風圧または風力は、接近流の速度Eq(= $1/2 \rho V^2$ 、 ρ は空気密度、Vは接近風速)と風圧係数 または風力係数との積でそれぞれ表される。建築基 準法では空気密度を ρ =1.2kg/m³と仮定して、速度圧 をq=0.6 V^2 と与えている。室内圧係数は建築物の開口 部または隙間を通して流出入する空気のバランスで 決定され、縮小模型を用いる風洞実験では測定が困難 であるため、基準では別に定めている。一般に単に風 圧係数というとき外圧係数を指すことが多く、この稿 でもそれに倣っている。

(a)板状の物体の風力係数(b) 建築物の風力係数図1 風力係数と風圧係数の関係

構造骨組用風力係数には告示第1454号の定義によ り時間平均風力係数が用いられ、外装材用風力係数に は告示第1458号の定義によりピーク風力係数が用い られる。いずれも変動する風荷重の瞬間的なピーク の値で設計されなければならず、構造骨組用風荷重は 平均風力係数にガスト影響係数を乗じることにより、 また外装材用風荷重はピークの風力係数を直接与え ることによって、いずれもピークの風荷重が計算され る。この違いは主に注目する面の大きさによって荷 重の特性が異なることの考慮から生じている。一般 に、単位面積当りの荷重は外装材用風荷重の方が構造 骨組用風荷重よりも大きい。(全体の力で比較すると、 構造骨組用荷重の面積の方が外装材用風荷重の面積 よりも大きいので、当然ながら構造骨組用荷重の方が 大きい。)構造骨組用風荷重と外装材用風荷重の算定 法の区別は一見煩雑であるが、合理的な荷重を算定す るために必要であって、わが国だけでなく海外の基準 でも一般に採用されている。

3. 風洞実験の方法

風洞は当試験所所有のエッフェル型吹き出し式風 洞を用いた。この風洞の大きさは全長約19m、測定筒 の長さ約12mで、測定部の断面は幅1.8m×高さ1.4mで ある(図2参照)。模型は直径1.6mのターンテーブル の中心に置かれ、その風上側に置かれたバリアとラフ ネス・ブロックを通して、自然風に近い乱れた風を作 ることができる。ラフネス・ブロックの大きさを変 化させることにより、海沿いから市街地までの風に相 似な状態を風洞の床上に作ることが可能である。こ の実験では、一般の市街地に相当する気流、つまり平 成12年建設省告示第1454号に規定される粗度区分III の気流(平均風速のべき指数約0.2)を再現した(図3参 照)。

(4)実験機型は幅B=30cm×奥行きD=30cmの正方形 平面の寄棟屋根を商便性に優れル樹脂で作られ試験層 建築物の模型に同なたの過酷なの模型料を虹雨節を再現 物促進課験と2,400時間化気配(からみ)観29変化校をび扱い) の屋根が準備試験結果の外観を写真2に、またサンシャイ

、告示第1454号には建築物の構造情報相風力係数が示され、切 また告示第1458号には外装材用風力係数が示され、切 素屋根な片流れ屋根などの例が記載されているが、こ れらの屋根は軒の出がない形状の建築物である。軒 の出がある建築物は一般に多くあるので、この実験で は壁面の位置を軒から内側に移動きせて軒の出を再 現てた。軒の出た(=0, 2, 4cm/は屋根の幅Bで無次元 化して表し、客乃=0, 1/15および2/15とした。

聖限に作用?響む風型零湿模型防装留ご開けたն徑 所示のアネらビニ層の劣化並少なで風間の取やと設置 他だ確例?愛摸器従毒のマミシピュ鋼板では全点前報に測 定したるの型頻期を点な屋根は面初284箇研ど種類并面 の透量性ならび怒怒意性の比較認知なですが24点は非設けたる 実験機趣結果図れて現度を持ましび写真創い示すた。風圧は、一 般にめたきの変動加込性、展延性00Hzの周波数でサンプ リマゼめっぎ鋼板にな子、約5億プラック、値などの読品を騙査 動等がったミニ病法留金あるを回避要用は設えていた。 素だ、保維薪材、用料定に係数ドビンコラガ、谷泉行了下ど外、 ファンの耐久性を向上させたものであり、今後」FEエコ

理の方法についての詳細は文献1)を参照されたい。 表2 フィルム種類による比較

4. 実験結果	-
	5 <u>4</u>
4.1 座板勾印(い)-dH る 風(土)-ボタン(ノ)-行(取) H CH, 代表的な),
戦争調査のない止 <u>万</u> 北省国の高雄屋根の壁に垂直	5
風雨でのの屋根中心線上の風圧分布を図5に示け。 正	p
風圧係数は注目する面の内方向(屋根の下方向)に、	負
の風圧病なは面の外方向(屋根の上方向)に図示し	7
◆ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	よ
び最小学校書名風圧係数を示した。〇風圧は時間的に	変
動きるので、その変動の中での最大値と最小値がピ	
(#2) か風下(読物として悪物し、れてい、(感なし)まり、が思惑性	T
の風圧は最美ピーク風圧係数と最かピーク風速係	数
▶●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	\$
(SWON- AR96(先那面 下係料為け下上 自の99年号をもち、推りけ	注
目する前を探測から押し付ける方向に作用する圧	ー カ
を表し負け外側に向かって吸われる方向に作用す	2
正力を指す ここで 最小周回係粉けるの細対最の	+
たいとはないことを ラミのではたく 教室的ナイク	入
ささか小さいことを言うのではなく、又且線をイメ	1
ジレモ、負の方向の徹面をいう。したかって、最小ビ	-
ク風圧係数は弱い世の風圧係数であることもある」	多結月
強い変動の風圧係数であることもある。	19 HTP 29
屋根勾配β=10°では、屋根風上端部で風上壁面	か

図4 実験模型

写真1風洞内に設置された模型

写真2 寄棟屋根をもつ建築物模型

らの剥離の影響による強い負圧が見られる。一般に、 緩勾配の屋根では、この風圧分布のように軒先に強い 負圧が作用する。流れの剥離は空気力学の興味深い 現象の一つで、物体の表面に沿って流れる流体が鋭い 角で急激に曲がることができず、物体の表面から外側 に飛び出す現象を言う。飛び出した流れはその外側 の流れ方向の流体によって流れ方向に強制的に向き を変化させられる。このときの流体のストレスが剥 離直後の物体の表面に強い負圧を作用させる。多く の基準(例えば告示第1458号)で、建築物の屋根や壁の 端部で強い負圧による風荷重を設定しているのは剥 離による影響を考慮したものである。 屋根勾配 β が大きくなると風上面で風圧係数は正 側に変化し、 β =40°では風上側屋根面の広い部分で 平均風圧係数が正の値を示す。このことは、屋根勾配 が大きくなるにつれ、軒先で剥離した流れが風上屋根 面で再付着することを示している。再付着は風上側 の軒先で剥離した流れが剥離後の物体表面に再び当 る現象(流体が最初に物体に当るのは風上側の面で、 この場合流体は風上側の壁面に付着している)で、再 付着する瞬間にその点では流体がその物体表面を外 側から内側に向かって押すので正の圧力が発生する。 連続して再付着する場合には常に正圧が生じるので、 時間平均的にも正圧が作用する。 β =20°では、棟頂

図6 代表的な風圧変動の波形(正方形平面、点の位置は図5を参照のこと)

部付近での風圧係数が負側に大きいことが特徴的で、 棟の直ぐ風下側では=č −2.65を示している。風上側 軒先で剥離した流れの外側は速度が大きく、内側は速 度が小さいので、その間の流体には強い剪断応力が働 いている。この層は剥離剪断層と呼ばれ、剥離剪断層 に内側から物体(この場合屋根の棟)が近づくと流体 は収束され、物体には強い負圧が作用する。この収束 効果は翼断面では顕著に見られ、それらは剥離を伴わ ずに収束効果のみが現れる特殊なケースであると考 えることができる。物体がさらに剥離剪断層に近づ くと上述のように再付着が生じるが、勾配20°の屋根 は再付着寸前の最も収束効果が強く現れる形状であ ると考えられ、切妻屋根でもこの勾配の屋根棟部に強 い負圧が生じる(告示第1458号では、勾配20°の切妻 屋根の軒端部で-5.4という値の建築物周りで最大の 負圧が設定されている)。

屋根勾配が β =30°以上になると、風上側屋根面で は流れの再付着により軒に近い屋根面と棟に近い屋 根面の両方で、 β =20°以下の屋根に比べて負圧は小 さくなるが、再付着した流れは棟で2度目の剥離を生 じ、これより風下側の屋根面上に2度目の再付着は生 じないので、風下側屋根面全体にわたって比較的強い 一様な負圧が作用する。この風下側屋根面の負圧の 大きさは風下側壁面の負圧とほぼ等しくなる。

図6は代表的な風圧変動の波形を示したものであ る。軒先付近(a)および棟付近(b)(図5参照)の風圧 変動は非常に激しく、ときおり鋭いスパイク状の負 圧が発生していることがわかる。最小ピーク風圧係 数でかはこのスパイク状の負圧の極値を数点の平均値

図8 最小ピーク風圧係数分布の例

(時間平均値として求めた平均風圧係数と異なる点に 注意すること)として与えた値である。平均風圧係数 とこれらの負の極値のピーク風圧係数の比は場所ご とに異なることが、外装材用風圧係数として負のピー ク風圧係数を直接与えた一つの理由である。なお、風 下側の屋根面(c)では変動の小さい負圧が作用するこ と、剥離直後の再付着点(d)付近では正圧が作用し、瞬 間的に負圧が作用する様子が波形から分かる。

屋根全体の平均風圧係数分布の例を図7に示す。上 で述べたような屋根中心線上の流れの剥離、再付着お よび再剥離が屋根上の各部で生じ、複雑な分布を示し ている。寄棟屋根の形状からくる風圧分布の特徴は 隅棟付近で見られ、比較的強い負圧(濃い色の部分)が 隅棟の風下側で見ることができる。最小ピーク風圧 係数分布の例を図8に示す。緩勾配の屋根の軒先部で Čp=-7.5という非常に強い負圧が局部的に生じている。 このような強い負圧は軒先での流れの剥離と隅棟によ る収束効果が同時に発生していることによると考えら れる。ただし、この負圧はごく狭い範囲の面でしか生 じない。寄棟屋根のコーナー部では強度に十分な余裕 のある外装材の固定に配慮する必要がある。

4.2 軒の出の影響

海外の基準では軒部の設計用風力係数が与えられ ているものがあるが、建築基準法では、軒の出の効果 は示されていない。実験結果から得られた全風向中 のピーク風圧係数の最小値(ここでは負最大ピーク風 圧係数と呼ぶ)と屋根勾配および軒の出の関係を図9 に示す。軒の出がない模型(b/B=0)は多くの基規準 の基になった実験で採用されているケースである。 軒の出がないケースでは、コーナー部のピーク風圧係 数 C_{ρ} は屋根勾配 $\beta = 10^{\circ}$ で -7を超え、屋根勾配 β の 増加に従って減少する(図9(a)参照)。図5から暗示 されるように、β=10°では屋根面上で流れの再付着 が生じないため、風上側軒先の剥離点の直ぐ風下側で は強い負圧が生じ、コーナー部の隅棟風上側では非常 に強い負圧が生じる。このコーナー部の強い負圧は ごく限られた領域にのみ生じるのは前述のとおりで ある。軒の出がある場合、β=10°と20°ではコーナー 部の局部風圧を減少させるのに対し、β=30°と40° では逆に軒の出がコーナー部の局部風圧を増大させ る興味深い現象が見られた。これは、図10に示すよ うにコーナー部を斜めに横切る気流が屋根上で曲率 を増す翼周りの気流のような効果をもたらしたと推 測される。図9(b)に示す隅棟部の強い負圧はβ=20 ° で最も大きくなり、C 𝓁=−3.5を超える。屋根勾配 β=20°で棟近傍の局部風圧が強くなる現象は切妻屋 根でも見られ、この勾配付近で屋根頂部の棟は風上側 軒先からの剥離流との強い干渉を生じると考えられ る。隅棟部近傍の局部風圧は軒の出による影響をあ まり強く受けない。

図9 寄棟屋根の負最大ピーク風圧係数

(流跡線は推測)

設計上の観点から、緩勾配の屋根では軒の出を設け ると局所的な風荷重を小さく設定でき、急勾配の屋根 では軒の出がない方が風荷重を比較的小さくできる ことを知っておくことは有益であろう。

4.3 寄棟屋根の外装材用設計ピーク風圧係数

風洞実験結果から、特定の建築物でなく、一般の建 築外装材設計用ピーク風圧係数を決定することは、実 際のところ非常に難しい。それは、考慮する外装材の 面積とその応答特性によって作用する瞬間風圧の大 きさが変化するからである。つまり、小さい面積の外 装材は、短い周期の圧力変動まで応答するので、鋭い ピークの風圧まで考慮しなければならないが、大きい 面積の外装材は、短い周期の圧力変動には応答しない ので、考慮する圧力変動は比較的小さいピークの風圧 変動を考慮すれば良い。したがって、設計しようとす る外装材の大きさによって設計風圧係数は変化する が、建築基準法などの基準ではあまり複雑な荷重設定 はできないので、実験結果を基にして実質上の問題が 生じない荷重を設定する作業が必要であり、それには 広い議論が望まれる。

ここでは、比較的大規模の建築物を想定し、金属製 屋根葺き材で屋根が覆われる場合を考える。模型の 縮尺を1/100とすると実建物の平面1辺は30mで、外装 材の負担面積は約1m²、ピークの風圧係数は0.5~1秒 間程度の平均化時間を想定していることになる。本 実験では、建築基準法にある切妻屋根の風圧係数と比 較すると非常に高い圧力が測定されているが、それは

勾配 部位	10° 以下	20°	30° 以上
一般部	- 2.5	- 2.5	-2.5
周縁部	- 3.2	- 2.6	-2.6
隅棟部	- 2.1	- 3.6	- 3.0
コーナー部	- 7.5	- 4.2	- 3.2
	(-5.2)	(-3.6)	(-5.7)

表1 寄棟屋根の外装材設計用負のピーク外圧係数

備考:1/15B程度の軒の出がある場合、コーナー部の ピーク外圧係数は()内の値を用いることができる。

建築基準法の規定値が比較的小規模の建築物を想定 しているためである。

寄棟屋根の外装材用ピーク風圧係数は建築基準法 で例示されていないので、施行令第87条の2に従って、 風洞実験でその風圧係数を設定することができる。 ここでは、実験結果に基づいて外装材用ピーク風圧係 数を表1のように提案する。ただし、建築基準法に寄 棟屋根の風力係数が将来例示されるときには、他の実 験結果とも併せてそれらの値が決定されることにな るはずなので、ここでの提案値がそのまま採用されな いこともあることは承知頂きたい。表1には屋根勾配 40°の実験結果を勾配30°以上にまとめて示した。 それぞれの領域の幅は屋根平面の幅Bを基準として 0.1Bとした。なお、長方形平面の寄棟屋根では長辺に 平行な棟があるが、その部分については隅棟部の値を 用いることができよう。

4.4 軒天井の風圧係数

軒天井は外気に面しているので風荷重を受けるが その風圧係数はこれまで明らかにされていなかった。 風上側に位置する軒天井では正の風圧が軒天井を下

から上に押し上げる方向に作用し、風下側と側方に位 置する軒天井では負の風圧が軒天井を下に引き下げ る方向に作用する。このように、軒天井は正と負の両 方の荷重で設計されなければならない。一般に軒天 井は軽量で、これまで設計上の注意があまり払われて いなかった部位であるが、軒天井が破損すると小屋裏 の圧力が外壁面の圧力とほぼ等しくなり、風圧で直接 破損した箇所以外の軒天井も連鎖的に破損する危険 性がある。また、小屋裏空間は室内天井の上側にあり、 一般に室内の天井は風圧に対して設計されないので、 室内の天井が小屋裏の圧力の増加によって脱落する 被害に発展することもある。

本実験で測定した軒天井と直下の壁の正と負の ピーク風圧係数の比較を図11に示す。軒天井の正の ピーク風圧係数は壁のピーク風圧係数を上回ること はないが、軒天井の負のピーク風圧係数は壁のピー ク風圧係数よりも大きくなる箇所があることが分か る。軒天井の負のピーク風圧係数が壁の負のピーク 風圧係数を上回るのはコーナー部ではなく一般部で ある。軒天井のコーナー部と一般部で区別せずに設 計用ピーク風圧係数を設定すると正:1.9と負:-2.3 である。

5.まとめ

寄棟屋根は比較的多い屋根形状であるが、建築基準 法で外圧係数が与えられていないので設計に支障を きたしていた。そこで、寄棟屋根についての風洞実験 を実施し、設計用外圧係数を提案した。

実験結果から、寄棟屋根に作用する風圧係数は20° 以下の緩勾配の屋根と30°以上の比較的急勾配の屋 根で特徴が異なることが分かった。緩勾配の屋根で は軒部に近い屋根面で軒先からの流れの剥離の影響 によって、また棟と隅棟部では剥離流の収束効果に よって負圧が強くなることが分かった。軒先からの 流れの剥離の影響は屋根のコーナー部において著し く、屋根勾配10°ではごく局所的に-7を超える強い ピーク風圧係数が見られた。棟部の収束による影響 は隅棟部の風下側で見られ、勾配20°のときに局所的 に強くなる。軒の出の影響は屋根のコーナー部にの み現れ、勾配10°の屋根のコーナー部で生じる局部負 圧を効果的に下げるが、30°以上の勾配の屋根コー ナー部で強い負圧が発生することがある。外装材が 金属板である場合、これらの金属板端部の固定を堅固 にする必要がある。軒天井は正と負の両方の荷重が 作用し、その大きさは直下の壁に作用する荷重とほぼ 等しい。

風洞実験結果に基づいて、寄棟屋根の外装材設計用 負ピーク外圧係数を提案した。提案値は比較的大規 模の建築物を想定している。この提案値は正方形平 面の寄棟屋根をもつ建築物の風洞実験結果をまとめ たものである。これらを基準に組み込む際には、長方 形平面の寄棟についても考慮されたより一般的な形 式で再提案されるはずであるので、ここで示した提案 値が若干変化することもあり得るであろう。しかし、 大きな変化はないと考えられるので、当面の間、これ らの値を用いて風荷重に対して安全な寄棟屋根を設 計していただきたい。

参考文献

高森浩治、西村宏昭、浅見理英、染川大輔、相原知子: 低層建築物の寄棟屋根に作用する風圧性状 – 正方 形平面の場合 – 、第20回風工学シンポジウム論文集、 pp.409-414, 2008.